Perron-Frobenius Theory and the Zeros of Polynomials
نویسندگان
چکیده
منابع مشابه
Perron-frobenius Theory and the Zeros of Polynomials
1. J. Douglas, Jr. and T. M. Gallie, An approximate solution of an improper boundary value problem, Duke Math. J. vol. 26 (1959) pp. 339-347. 2. F. John, Numerical solution of the equation of heat conduction for preceding times, Ann. Mat. Pura Appl. ser. IV vol. 40 (1955) pp. 129-142. 3. C. Pucci, Sui problemi di Cauchy non "ben posti," Atti Accad. Naz. Lincei. Rend. Cl. Sei. Fis. Mat. Nat. vol...
متن کاملA primer of Perron–Frobenius theory for matrix polynomials
We present an extension of Perron–Frobenius theory to the spectra and numerical ranges of Perron polynomials, namely, matrix polynomials of the form L(λ) = Iλ − Am−1λm−1 − · · · − A1λ− A0, where the coefficient matrices are entrywise nonnegative. Our approach relies on the companion matrix linearization. First, we recount the generalization of the Perron–Frobenius Theorem to Perron polynomials ...
متن کاملSampling zeros and the Euler-Frobenius polynomials
In this paper, we show that the zeros of sampled-data systems resulting from rapid sampling of continuous-time systems preceded by a zero-order hold (ZOH) are the roots of the Euler– Frobenius polynomials. Using known properties of these polynomials, we prove two conjectures of Hagiwara and co-workers, the first of which concerns the simplicity, negative realness and interlacing properties of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1961
ISSN: 0002-9939
DOI: 10.2307/2034315